Apologise, but, radiometric dating and other methods suggest

This page has been archived and is no longer ated. Despite seeming like a relatively stable place, the Earth's surface has changed dramatically over the past 4. Mountains have been built and eroded, continents and oceans have moved great distances, and the Earth has fluctuated from being extremely cold and almost completely covered with ice to being very warm and ice-free. These changes typically occur so slowly that they are barely detectable over the span of a human life, yet even at this instant, the Earth's surface is moving and changing. As these changes have occurred, organisms have evolved, and remnants of some have been preserved as fossils. A fossil can be studied to determine what kind of organism it represents, how the organism lived, and how it was preserved.

For example, based on the primate fossil record, scientists know that living primates evolved from fossil primates and that this evolutionary history took tens of millions of years. By comparing fossils of different primate species, scientists can examine how features changed and how primates evolved through time.

However, the age of each fossil primate needs to be determined so that fossils of the same age found in different parts of the world and fossils of different ages can be compared.

There are three general approaches that allow scientists to date geological materials and answer the question: "How old is this fossil? Relative dating puts geologic events in chronological order without requiring that a specific numerical age be assigned to each event. Second, it is possible to determine the numerical age for fossils or earth materials.

Numerical ages estimate the date of a geological event and can sometimes reveal quite precisely when a fossil species existed in time. Third, magnetism in rocks can be used to estimate the age of a fossil site. This method uses the orientation of the Earth's magnetic field, which has changed through time, to determine ages for fossils and rocks. Geologists have established a set of principles that can be applied to sedimentary and volcanic rocks that are exposed at the Earth's surface to determine the relative ages of geological events preserved in the rock record.

remarkable, this

For example, in the rocks exposed in the walls of the Grand Canyon Figure 1 there are many horizontal layers, which are called strata. The study of strata is called stratigraphyand using a few basic principles, it is possible to work out the relative ages of rocks. Just as when they were deposited, the strata are mostly horizontal principle of original horizontality. The layers of rock at the base of the canyon were deposited first, and are thus older than the layers of rock exposed at the top principle of superposition.

All rights reserved. In the Grand Canyon, the layers of strata are nearly horizontal. Most sediment is either laid down horizontally in bodies of water like the oceans, or on land on the margins of streams and rivers. Each time a new layer of sediment is deposited it is laid down horizontally on top of an older layer.

This is the principle of original horizontality : layers of strata are deposited horizontally or nearly horizontally Figure 2. Thus, any deformations of strata Figures 2 and 3 must have occurred after the rock was deposited.

Layers of rock are deposited horizontally at the bottom of a lake principle of original horizontality. Younger layers are deposited on top of older layers principle of superposition. Layers that cut across other layers are younger than the layers they cut through principle of cross-cutting relationships. The principle of superposition builds on the principle of original horizontality. The principle of superposition states that in an undeformed sequence of sedimentary rocks, each layer of rock is older than the one above it and younger than the one below it Figures 1 and 2.

Accordingly, the oldest rocks in a sequence are at the bottom and the youngest rocks are at the top. Sometimes sedimentary rocks are disturbed by events, such as fault movements, that cut across layers after the rocks were deposited.

This is the principle of cross-cutting relationships. The principle states that any geologic features that cut across strata must have formed after the rocks they cut through Figures 2 and 3.

According to the principle of original horizontality, these strata must have been deposited horizontally and then titled vertically after they were deposited. In addition to being tilted horizontally, the layers have been faulted dashed lines on figure. Applying the principle of cross-cutting relationships, this fault that offsets the layers of rock must have occurred after the strata were deposited.

Join radiometric dating and other methods completely agree

The principles of original horizontality, superposition, and cross-cutting relationships allow events to be ordered at a single location.

However, they do not reveal the relative ages of rocks preserved in two different areas. In this case, fossils can be useful tools for understanding the relative ages of rocks. Each fossil species reflects a unique period of time in Earth's history.

accept. opinion, interesting

The principle of faunal succession states that different fossil species always appear and disappear in the same order, and that once a fossil species goes extinct, it disappears and cannot reappear in younger rocks Figure 4. Fossils occur for a distinct, limited interval of time. In the figure, that distinct age range for each fossil species is indicated by the grey arrows underlying the picture of each fossil.

The position of the lower arrowhead indicates the first occurrence of the fossil and the upper arrowhead indicates its last occurrence - when it went extinct.

Using the overlapping age ranges of multiple fossils, it is possible to determine the relative age of the fossil species i. For example, there is a specific interval of time, indicated by the red box, during which both the blue ammonite and orange ammonite co-existed.

If both the blue and orange ammonites are found together, the rock must have been deposited during the time interval indicated by the red box, which represents the time during which both fossil species co-existed. In this figure, the unknown fossil, a red sponge, occurs with five other fossils in fossil assemblage B. Fossil assemblage B includes the index fossils the orange ammonite and the blue ammonite, meaning that assemblage B must have been deposited during the interval of time indicated by the red box.

Because, the unknown fossil, the red sponge, was found with the fossils in fossil assemblage B it also must have existed during the interval of time indicated by the red box.

Fossil species that are used to distinguish one layer from another are called index fossils. Index fossils occur for a limited interval of time.

Dating of sedimentary rocks by radiometric methods has long been a difficult matter and has been achieved only to broad limits by dating igneous intrusions into them or concordant lava flows or tuffs close to the sedimentary stratum concerned. Authigenic overgrowths on zircon, a mineral that is formed at high temperature and is insoluble in groundwater, have long attracted attention. 14 Carbon Dating. Radiocarbon dating is different than the other methods of dating because it cannot be used to directly date rocks, but can only be used to date organic material produced by once living organisms. 14 C is continually being produced in the Earth's upper . Oct 03,   Radiometric dating calculates an age in years for geologic materials by measuring the presence of a short-life radioactive element, e.g., carbon, or a long-life radioactive element plus its decay product, e.g., potassium/argon The term applies to all methods of age determination based on nuclear decay of naturally occurring.

Usually index fossils are fossil organisms that are common, easily identified, and found across a large area. Because they are often rare, primate fossils are not usually good index fossils.

This method is known as radiometric dating. Some commonly used dating methods are summarized in Table 1. The rate of decay for many radioactive isotopes . The earth is billions of years old. The most useful methods for measuring the ages of geologic materials are the radiometric methods-the ones that make use of radioactive parent isotopes and their stable daughter products, as preserved in rocks, minerals, or other geologic materials. The main condition for the method is that the production rate of isotopes stays the same through ages, i.e. Apr 27,   There are at least 67 different uniformitarian (the present is the key to the past) methods of dating the earth other than long-age radiometric dating: each of which yield ages of less than million years. 1 Of these other methods, 44 yield maximum ages of less than one million years and 23 others yield (max) ages of one million to million years.1 Yet all these other science-based.

Organisms like pigs and rodents are more typically used because they are more common, widely distributed, and evolve relatively rapidly. Using the principle of faunal succession, if an unidentified fossil is found in the same rock layer as an index fossil, the two species must have existed during the same period of time Figure 4. If the same index fossil is found in different areas, the strata in each area were likely deposited at the same time. Thus, the principle of faunal succession makes it possible to determine the relative age of unknown fossils and correlate fossil sites across large discontinuous areas.

All elements contain protons and neutronslocated in the atomic nucleusand electrons that orbit around the nucleus Figure 5a. In each element, the number of protons is constant while the number of neutrons and electrons can vary. Atoms of the same element but with different number of neutrons are called isotopes of that element. Each isotope is identified by its atomic masswhich is the number of protons plus neutrons.

For example, the element carbon has six protons, but can have six, seven, or eight neutrons. Thus, carbon has three isotopes: carbon 12 12 Ccarbon 13 13 Cand carbon 14 14 C Figure 5a. C 12 and C 13 are stable. The atomic nucleus in C 14 is unstable making the isotope radioactive. Because it is unstable, occasionally C 14 undergoes radioactive decay to become stable nitrogen N The amount of time it takes for half of the parent isotopes to decay into daughter isotopes is known as the half-life of the radioactive isotope.

Most isotopes found on Earth are generally stable and do not change. However some isotopes, like 14 C, have an unstable nucleus and are radioactive. This means that occasionally the unstable isotope will change its number of protons, neutrons, or both. This change is called radioactive decay. For example, unstable 14 C transforms to stable nitrogen 14 N. The atomic nucleus that decays is called the parent isotope.

The product of the decay is called the daughter isotope. In the example, 14 C is the parent and 14 N is the daughter.

Apologise, but radiometric dating and other methods right! excellent idea

Some minerals in rocks and organic matter e. The abundances of parent and daughter isotopes in a sample can be measured and used to determine their age. This method is known as radiometric dating. Some commonly used dating methods are summarized in Table 1.

The rate of decay for many radioactive isotopes has been measured and does not change over time. Thus, each radioactive isotope has been decaying at the same rate since it was formed, ticking along regularly like a clock.

For example, when potassium is incorporated into a mineral that forms when lava cools, there is no argon from previous decay argon, a gas, escapes into the atmosphere while the lava is still molten.

When that mineral forms and the rock cools enough that argon can no longer escape, the "radiometric clock" starts. Over time, the radioactive isotope of potassium decays slowly into stable argon, which accumulates in the mineral. The amount of time that it takes for half of the parent isotope to decay into daughter isotopes is called the half-life of an isotope Figure 5b. When the quantities of the parent and daughter isotopes are equal, one half-life has occurred.

If the half life of an isotope is known, the abundance of the parent and daughter isotopes can be measured and the amount of time that has elapsed since the "radiometric clock" started can be calculated. For example, if the measured abundance of 14 C and 14 N in a bone are equal, one half-life has passed and the bone is 5, years old an amount equal to the half-life of 14 C. If there is three times less 14 C than 14 N in the bone, two half lives have passed and the sample is 11, years old.

However, if the bone is 70, years or older the amount of 14 C left in the bone will be too small to measure accurately. Thus, radiocarbon dating is only useful for measuring things that were formed in the relatively recent geologic past.

Luckily, there are methods, such as the commonly used potassium-argon K-Ar metho that allows dating of materials that are beyond the limit of radiocarbon dating Table 1. Comparison of commonly used dating methods.

Radiation, which is a byproduct of radioactive decay, causes electrons to dislodge from their normal position in atoms and become trapped in imperfections in the crystal structure of the material.

Dating methods like thermoluminescenceoptical stimulating luminescence and electron spin resonancemeasure the accumulation of electrons in these imperfections, or "traps," in the crystal structure of the material.

If the amount of radiation to which an object is exposed remains constant, the amount of electrons trapped in the imperfections in the crystal structure of the material will be proportional to the age of the material. These methods are applicable to materials that are up to aboutyears old.

think only!

However, once rocks or fossils become much older than that, all of the "traps" in the crystal structures become full and no more electrons can accumulate, even if they are dislodged. The Earth is like a gigantic magnet. Chemically, zircon usually contains high amounts of U and low amounts of Pb, so that large amounts of radiogenic Pb are produced. Other minerals that also show these properties, but are less commonly used in radiometric dating are Apatite and sphene.

Discordant dates will not fall on the Concordia curve.

sorry, that

Sometimes, however, numerous discordant dates from the same rock will plot along a line representing a chord on the Concordia diagram. Such a chord is called a discordia. We can also define what are called Pb-Pb Isochrons by combining the two isochron equations 7 and 8.

Are not radiometric dating and other methods amusing

Since we know that theand assuming that the Pb and Pb dates are the same, then equation 11 is the equation for a family of lines that have a slope. The answer is about 6 billion years.

Radiometric dating / Carbon dating

This argument tells when the elements were formed that make up the Earth, but does not really give us the age of the Earth. It does, however, give a maximum age of the Earth. Is this the age of the Earth?

Authoritative radiometric dating and other methods are

Lunar rocks also lie on the Geochron, at least suggesting that the moon formed at the same time as meteorites. Modern Oceanic Pb - i.

Pb separated from continents and thus from average crust also plots on the Geochron, and thus suggests that the Earth formed at the same time as the meteorites and moon. Thus, our best estimate of the age of the Earth is 4. The initial ratio has particular importance for studying the chemical evolution of the Earth's mantle and crust, as we discussed in the section on igneous rocks.

Since K is one of the 10 most abundant elements in the Earth's crust, the decay of 40 K is important in dating rocks. But this scheme is not used because 40 Ca can be present as both radiogenic and non-radiogenic Ca. Since Ar is a noble gas, it can escape from a magma or liquid easily, and it is thus assumed that no 40 Ar is present initially.

Note that this is not always true. If a magma cools quickly on the surface of the Earth, some of the Ar may be trapped. If this happens, then the date obtained will be older than the date at which the magma erupted.

sorry, that

For example lavas dated by K-Ar that are historic in age, usually show 1 to 2 my old ages due to trapped Ar. Such trapped Ar is not problematical when the age of the rock is in hundreds of millions of years. The dating equation used for K-Ar is:. Some of the problems associated with K-Ar dating are Excess argon. This is only a problem when dating very young rocks or in dating whole rocks instead of mineral separates.

Minerals should not contain any excess Ar because Ar should not enter the crystal structure of a mineral when it crystallizes. Thus, it always better to date minerals that have high K contents, such as sanidine or biotite. If these are not present, Plagioclase or hornblende.

opinion you are

If none of these are present, then the only alternative is to date whole rocks. Atmospheric Argon. Some 40 Ar could be absorbed onto the sample surface. This can be corrected for. Metamorphism or alteration. Most minerals will lose Ar on heating above o C - thus metamorphism can cause a loss of Ar or a partial loss of Ar which will reset the atomic clock. If only partial loss of Ar occurs then the age determined will be in between the age of crystallization and the age of metamorphism.

Radiometric dating and other methods

If complete loss of Ar occurs during metamorphism, then the date is that of the metamorphic event. The problem is that there is no way of knowing whether or not partial or complete loss of Ar has occurred.

Examples of questions on this material that could be asked on an exam. Radiometric Dating. Prior to the best and most accepted age of the Earth was that proposed by Lord Kelvin based on the amount of time necessary for the Earth to cool to its present temperature from a completely liquid state.

Principles of Radiometric Dating Radioactive decay is described in terms of the probability that a constituent particle of the nucleus of an atom will escape through the potential Energy barrier which bonds them to the nucleus. Thus, if we start out with 1 gram of the parent isotope, after the passage of 1 half-life there will be 0. Some examples of isotope systems used to date geologic materials.

opinion you

If we divide equation 4 through by the amount of 86 Sr, then we get:. Note also that equation 5 has the form of a linear equation, i. How can we use this? In nature, however, each mineral in the rock is likely to have a different amount of 87 Rb.

Thus, once the rock has cooled to the point where diffusion of elements does not occur, the 87 Rb in each mineral will decay to 87 Sr, and each mineral will have a different 87 Rb and 87 Sr after passage of time.

The discordia is often interpreted by extrapolating both ends to intersect the Concordia.

consider, that

Pb leakage is the most likely cause of discordant dates, since Pb will be occupying a site in the crystal that has suffered radiation damage as a result of U decay. U would have been stable in the crystallographic site, but the site is now occupied by by Pb.

An event like metamorphism could heat the crystal to the point where Pb will become mobile. Another possible scenario involves U leakage, again possibly as a result of a metamorphic event.

have hit the

U leakage would cause discordant points to plot above the cocordia. The Age of the Earth A minimum age of the Earth can be obtained from the oldest known rocks on the Earth. So far, the oldest rock found is a tonalitic Gneiss metamorphic rock rock from the Northwest Territories, Canada, with an age of 3. This gives us only a minimum age of the Earth.

the life me

Is it likely that we will find a rock formed on the Earth that will give us the true age of the Earth? From the Pb-Pb isochron equation 11 we can make some arguments about meteorites.



Facebook twitter google_plus reddit pinterest linkedin mail

2 Replies to “Radiometric dating and other methods”

  1. I can consult you on this question and was specially registered to participate in discussion.

Leave a Reply

Your email address will not be published. Required fields are marked *